Franzosi, DB, Cacciapaglia, G., Cai, H., Deandrea, A. & Frandsen, M. Vector and axial vector resonances in composite models of the Higgs boson. J. High Energy Phys. 201676 (2016).
google scholar
Shimano, R. & Tsuji, N. Higgs mode in superconductors. Ann. Rev. condensation. Matter Phys. 11103-124 (2020).
google scholar
Pekker, D. & Varma, C. Amplitude/Higgs modes in condensed matter physics. Ann. Rev. condensation. Matter Phys. 6269-297 (2015).
google scholar
Klemenz, S. et al. Role of delocalized chemical bonding in square net-based topological semimetals. J Ben. Chem. soc. 1426350-6359 (2020).
google scholar
Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R = Y, La, Ce, Sm, Gd, Tb and Dy). Phys. Rev. B 77235104 (2008).
google scholar
Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. science Adv. 6eaay6407 (2020).
google scholar
Podolsky, D., Auerbach, A. & Arovas, D.P. Visibility of the amplitude (Higgs) mode in condensed matter. Phys. Rev. B 84174522 (2011).
google scholar
Zeilinger, A., Gähler, R., Shull, CG, Treimer, W. & Mampe, W. Single and double-slit diffraction of neutrons. Rev. mod. Phys. 601067-1073 (1988).
google scholar
Zhang, Y., Tan, Y.-W., Stormer, HL & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438201-204 (2005).
google scholar
Qu, D.-X., Hor, YS, Xiong, J., Cava, RJ & Ong, N.P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2At3† Science 329821-824 (2010).
google scholar
Ryu, C., Samson, EC & Boshier, MG Quantum interference of currents in an atomtronic SQUID. wet. common 113338 (2020).
google scholar
Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T. & Monthioux, M. Superconducting quantum interference device of carbon nanotubes. wet. nanotechnology. 153-59 (2006).
google scholar
Giazotto, F., Peltonen, JT, Meschke, M. & Pekola, J.P. Superconducting quantum interference proximity transistor. wet. Phys. 6254-259 (2010).
google scholar
Mittal, S., Orre, VV, Goldschmidt, EA & Hafezi, M. Tunable quantum interference using a topological source of indistinguishable photon pairs. wet. photonics 15542-548 (2021).
google scholar
Wall, S. et al. Quantum interference between charge excitation paths in a solid-state Mott insulator. wet. Phys. 7114-118 (2011).
google scholar
Barik, S. et al. A topological quantum optics interface. Science 359666-668 (2018).
google scholar
Popescu, S. Dynamic quantum non-locality. wet. Phys. 6151-153 (2010).
google scholar
Chang, J. et al. Direct observation of competition between superconductivity and charge density wavesequence in YBa2Cu3O6.67† wet. Phys. 8871-876 (2012).
google scholar
Lavagnini, M. et al. Raman scattering evidence for a cascade evolution of the collective amplitude mode of the charge density wave. Phys. Rev. B 81081101 (2010).
google scholar
Kogar, A. et al. Light-induced charge density wave in LaTe3† wet. Phys. 16159-163 (2020).
google scholar
Yusupov, RV, Mertelj, T., Chu, J.-H., Fisher, IR & Mihailovic, D. Single and collective mode couplings associated with 1- and 2-directional electronic ordering in metallic RTe3 (R = Ho, Dy, Tb). Phys. Rev. Lett. 101246402 (2008).
google scholar
Liu, HY et al. Possible observation of parametrically amplified coherent phasons in K0.3mOO3 using time-resolved extreme ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. B 88045104 (2013).
google scholar
Zocco, DA et al. Pressure dependence of the charge density wave and superconducting states in GdTe3,TbTe3and DyTe3† Phys. Rev. B 91205114 (2015).
google scholar
Xi, X. et al. Greatly improved charge density wave sequence in monolayer NbSe2† wet. nanotechnology. 10765-769 (2015).
google scholar
Yoshikawa, N. et al. Ultrafast switching to an isolating metastable state by amplitudon excitation of a charge density wave. wet. Phys. 17909-914 (2021).
google scholar
Mohammadzadeh, A. et al. Room temperature determination of the charge density waves in quasi-two-dimensional 1T-TaS2 devices. application Phys. please. 118223101 (2021).
google scholar
Klein, MV Theory of Raman scattering of charge density wave phonons. Phys. Rev. B 257192-7208 (1982).
google scholar
Wang, Y. et al. The range of non-Kitaev terms and fractional particles in α-RuCl3† npj Quantum Mater. 514 (2020).
google scholar
Devereaux, TP & Hackl, R. Inelastic light scattering of correlated electrons. Rev. mod. Phys. 79175-233 (2007).
google scholar
Cardona, M. Light scattering in solids 1 (Springer, 1975).
Koningstein, JA & Mortensen, OS Electronic Raman spectra IV: relationship between the scattering tensor and the symmetry of the crystal field. J. Opt. soc. Ben. 581208 (1968).
google scholar
Chen, C.-F. et al. Control of inelastic light scattering quantum paths in graphene. Nature 471617-620 (2011).
google scholar
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. wet. common 66242 (2015).
google scholar
Friedman, J. & Hochstrasser, RM Interference effects in resonance Raman spectroscopy. Chem. Phys. please. 32414-419 (1975).
google scholar
Chen, C., Yin, Y.-Y. & Elliott, DS Interference between optical transitions. Phys. Rev. Lett. 64507-510 (1990).
google scholar
Eiter, H.-M. et al. Alternative pathway for charge density waveforming in multiband systems. proc. Natl Acad. science United States of America 11064-69 (2013).
google scholar
Gray, MJ et al. A cleanroom in a glove box. Rev. Science. instrument. 91073909 (2020).
google scholar
Tian, Y. et al. Low Vibration High Numerical Aperture Automated Variable Temperature Raman Microscope. Rev. Science. instrument. 87043105 (2016).
google scholar
Maschek, M. et al. Competing soft phonon modes at the charge density wave transitions in DyTe3† Phys. Rev. B 98094304 (2018).
google scholar
Powell, RC Symmetry, group theory and the physical properties of crystals full. 824 (Springer, 2010).
#Axial #Higgs #mode #detected #quantum #path #interference #RTe3 #Nature